If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9u^2+42u-49=0
a = 9; b = 42; c = -49;
Δ = b2-4ac
Δ = 422-4·9·(-49)
Δ = 3528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3528}=\sqrt{1764*2}=\sqrt{1764}*\sqrt{2}=42\sqrt{2}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-42\sqrt{2}}{2*9}=\frac{-42-42\sqrt{2}}{18} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+42\sqrt{2}}{2*9}=\frac{-42+42\sqrt{2}}{18} $
| -4(6x-4)+2(-8x+1)=18 | | 3x-(x-4)=8x-16 | | |4x-3|=|4x+2| | | u^2-u+2=0 | | -13-(-7)=x/2 | | y÷4-2=7 | | 3x-16=5x-2 | | 2z+7+4z=2(2z+8) | | -5(w-5)=8w-27 | | 3.8x-4.7=39 | | -2=x=18 | | -12=-4(q-15) | | −12n^2−11n=−15 | | -x=9/x=1 | | 3/4y-15=1/2(y+4) | | 9x+13=-77 | | 51=2(1-v)-3(2+3v) | | Y=3.5x+2 | | 9u^2(42u+49)=0 | | -4y(y-9)(y+1)=0 | | Y^2-y+28=0 | | 4(2x+4)-4=2(x+4)+2 | | -6(r-4)=-4 | | 13=n=6 | | -7m-25=17 | | 4(w-9)^2+5=21 | | 9-10=5x+2(2x-4x) | | M+3=-m- | | r^2-19r=0 | | 43x-43=-42x+-43 | | X^2+80=-18x | | (y/2)+(1/3)=(4/5)+(1/30) |